339 research outputs found

    The Use of GIS for Supporting the Experimental Representation of the Selected Supply Network in Pafos Municipality — \u27The Hydrogis Lab\u27

    Get PDF
    The HydroGIS Lab project (http://cyprusremotesensing.com/hydrogis/) aims to satisfy the dire need for authorities to solve the extremely serious problem of water supply as a result of continued water shortage. The chronic problems of water losses in the water supply network pipes, the uncontrolled and non-optimum operation of pumping stations, the incorrect design of the networks because of various interventions such as town planning and erroneous mapping of existing networks, are some of the most important problems which need to be resolved in order to optimize the performance of the networks and, consequent‐ ly, save water and energy. The innovative aspect of the Project is that state-of-the-art technologies are combined for the mapping of water networks through the Global Position‐ ing System (GPS), Radar Scanners and Satellite Remote Sensing (SRS). The data is entered into a Geographic Information System (GIS), with the aim of developing a digital imprint and the mapping of the network. The study of an existing selected water supply network and the collection of the necessary information by the Cyprus University of Technology and the Water Development for the network and its systems will lead to an imaging of water pipes and their design using a radar scanner and special software and GIS. Satellite im‐ ages, which have been transformed into the local reference system using specialized software, will be coupled with the digital imaging of the existing maps. This information will then be organized in such a way allowing the development of maps and their analysis at different levels (e.g. water supply network, buildings, water supply elements, geographic informa‐ tion, features of the network’s systems, etc.)

    Detecting Underground Military Structures Using Field Spectroscopy

    Get PDF
    Satellite remote sensing is considered as an increasingly important technology for detecting underground structures. It can be applied to a wide range of applications, as shown by various researchers. However, there is a great need to integrate information from a variety of sources, sent at different times and of different qualities using remote sensing tools. A SVC-HR1024 field spectroradiometer could be used, and in-band reflectance’s are determined for medium- and high-resolution satellite sensors, including Landsat. Areas covered by natural soil where underground structures are present or absent can easily be detected, as a result of the change in the spectral signature of the vegetation throughout the phenological stages; in this respect, vegetation indices (VIs) such as the normalized difference vegetation index (NDVI), simple ratio (SR), and enhanced vegetation index (EVI) may be used for this purpose. Notably, the SR vegetation index is useful for determining areas where military underground structures are present
    corecore